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Summary

1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reli-

ably assess species’ status and trends. Insect monitoring poses a challenge where there are

strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly

monitoring schemes (BMSs) operate in an increasing number of countries with broadly the

same methodology, yet they differ in their observation frequency and in the methods used to

compute annual abundance indices.

2. Using simulated and observed data, we performed an extensive comparison of two approaches

used to derive abundance indices from count data collected via BMS, under a range of sampling

frequencies. Linear interpolation is most commonly used to estimate abundance indices from sea-

sonal count series. A second method, hereafter the regional generalized additive model (GAM),

fits a GAM to repeated counts within sites across a climatic region. For the two methods, we esti-

mated bias in abundance indices and the statistical power for detecting trends, given different pro-

portions of missing counts. We also compared the accuracy of trend estimates using

systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767).

3. The regional GAM method generally outperforms the linear interpolation method. When

the proportion of missing counts increased beyond 50%, indices derived via the linear inter-

polation method showed substantially higher estimation error as well as clear biases, in com-

parison to the regional GAM method. The regional GAM method also showed higher power

to detect trends when the proportion of missing counts was substantial.
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4. Synthesis and applications. Monitoring offers invaluable data to support conservation pol-

icy and management, but requires robust analysis approaches and guidance for new and

expanding schemes. Based on our findings, we recommend the regional generalized additive

model approach when conducting integrative analyses across schemes, or when analysing

scheme data with reduced sampling efforts. This method enables existing schemes to be

expanded or new schemes to be developed with reduced within-year sampling frequency, as well

as affording options to adapt protocols to more efficiently assess species status and trends

across large geographical scales.

Key-words: abundance indices, butterfly monitoring scheme, butterfly count, citizen science,

flight period, insect conservation, missing data, pollard walk, sampling effort, seasonal pattern

Introduction

Long-term, standardized monitoring programmes are key

to assessing the state of biodiversity. They enable the

impacts of environmental change on population abundance

to be quantified, and provide evidence of the status of spe-

cies and ecosystems against policy targets (Warren 1993;

Van Swaay et al. 2011). Over the last two decades, the

number of volunteer-based monitoring schemes has sub-

stantially increased and expanded to multiple taxa, includ-

ing amphibians, birds, butterflies, mammals, plants, reptiles

and other insects (Schmeller et al. 2009). With the growing

prominence of citizen science initiatives, data contributed

by large networks of non-professionals represent an impor-

tant resource to assess species trends and build robust bio-

diversity indicators (Gregory et al. 2005; Van Swaay et al.

2008; Brereton et al. 2011; Sauer & Link 2011). These large

data sets are particularly useful for measuring the impact of

changes in climate and other environmental drivers, provid-

ing substantial insights into ecological processes that

inform conservation initiatives (Schmeller et al. 2009).

A dominant goal in most long-term monitoring schemes

is to produce reliable measures of density or abundance to

adequately assess population change in time and space (Ste-

phens et al. 2015). Collection of long time series is particu-

larly relevant for invertebrates, which are prone to show

important inter-annual fluctuation and where short-term

population change must be interpreted with caution. For

insect monitoring schemes, a key challenge in producing

reliable abundance metrics is the link between species phe-

nology and observable abundance of a specific life stage

(e.g. adult butterflies). Like most insects, butterfly counts

are characterized by strong seasonal patterns (Roy &

Sparks 2000), determined by asynchrony of emergence, the

longevity of individuals and the number of generations pro-

duced per year – all of which are species-specific attributes

that vary over climatic regions and change annually in

response to factors such as weather and biotic interactions.

Such variability in phenology has been evidenced along a

latitudinal gradient covering three different climatic regions

in the United Kingdom (Hodgson et al. 2011).

When abundance counts are characterized by seasonal

patterns, repeated counts are crucial for producing reli-

able abundance indices and to detect change in popula-

tions over time. By recommending weekly counts, the first

butterfly monitoring scheme (BMS) established in 1976 in

the UK (Pollard & Yates 1993) acknowledged the neces-

sity of such repeated sampling over the monitoring sea-

son. With such data, abundance indices can then be

calculated as the total number of individuals observed

over all weekly counts from a site in a given year, provid-

ing a measure of accumulated ‘butterfly days’ over a

defined time interval (Pollard & Yates 1993). This mea-

sure assumes that detection probability does not vary sys-

tematically and that counts are frequent, evenly spread in

time, and cover the entire period of adult butterfly activ-

ity. In reality, transect counts produced by BMSs are

often unevenly distributed in time or with periods of miss-

ing counts due to unsuitable weather conditions, unavail-

ability of recorders, or protocols based on less frequent

visits. Although weekly visits over the entire season are

advisable, the requirement for such effort can also deter a

wide range of potential recorders and makes it difficult to

recruit new volunteers that could contribute to BMS

development. Yet, expanding existing monitoring schemes

to wider areas and establishing new schemes in unmoni-

tored regions are critical to investigate broad geographical

patterns and better understand the impacts of environ-

mental change. For these reasons, new BMSs are increas-

ingly being established with fewer samples per year.

Examples include fortnightly (Israel), monthly (France) or

a set number of visits within a peak period in the UK and

many USA-based BMSs. Given the wide range in count

frequency observed across BMSs (Table 1), a systematic

comparison of the methods to estimate abundance indices

is timely.

The challenge of estimating abundance indices from

BMS data, however, increases when the number of visits

per site decreases. This becomes particularly important

when analyses are conducted across BMSs with different

survey intensities. When only a few weekly visits are

missed, values for missing counts can be estimated locally

from the counts recorded on either side of the missing

observation, hereafter referred to as the ‘linear interpola-

tion’ method. Annual abundance indices can then be esti-

mated from the area under the curve derived from the
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observed and the estimated weekly counts (Pollard &

Yates 1993). While this method is commonly used by a

number of BMSs to produce local abundance indices, an

alternative approach using a Generalized Additive Model

(GAM) fitted at the site level to estimate values for miss-

ing counts has been shown to improve reliability of the

resulting indices (Rothery & Roy 2001). Nevertheless, a

GAM can be highly sensitive to changes in survey inten-

sity and it was therefore recommended only for sites with

relatively few missing counts and where the week of peak

abundance was sampled (Rothery & Roy 2001).

More recently, Dennis et al. (2013) proposed a two-

stage modelling approach where a GAM is used to extract

the seasonal pattern of the flight-period curve from multi-

ple sites. The resulting curve can then be used to predict

values for missing counts at local sites. When applied to

BMS data collected in the UK and tested against simu-

lated data with 30% of the weekly counts missing, the

two-stage modelling approach showed improved precision

of trend estimates. Yet, it is unknown how it performs

when monitoring schemes require fewer visits and thus

have a larger proportion of missing weeks. While the

strength of the Dennis et al. (2013) approach over the

others resides in its use of data collected at multiple sites

to inform the annual pattern in abundance, it does not

explicitly account for variability across climatic regions.

However, deriving seasonal patterns from regions where

emergence and longevity patterns are expected to be simi-

lar should considerably increase the predictive power of

the two-stage model (Dennis et al. 2013). If this is true,

strength can also be gained from integrating data across

BMSs to better estimate seasonal patterns in the flight

period across a species range and produce more accurate

abundance indices locally.

This paper aims to assess the performance of the two-

stage approach proposed by Dennis et al. (2013), but

applied within specific climatic regions rather than across

sites within a single programme. This adaptation, here-

after called the ‘regional GAM’, allows the method to be

applied across multiple programmes, yet still accounts for

variability in flight curves across climatic regions. We

focus on exploring how two methods (regional GAM and

linear interpolation) perform in situations where sampling

effort each season is relatively low and the proportion of

missing counts is consequently high. Specifically, we inves-

tigate: (i) the accuracy of abundance indices derived from

each method, and (ii) the relative statistical power for

detecting a trend, given a range of scenarios of number of

monitoring sites. We do so both for univoltine and

multivoltine species with simulated count data and exam-

ine the impact of excluding data for which week of peak

abundance was not sampled. In addition, we also examine

the effect of increasing the proportion of missing weekly

counts on trend estimates derived from both abundance

indices, using observed count data collected for the Gate-

keeper Pyronia tithonus (Linnaeus 1767), a common and

widespread univoltine species with notable declining

trends across Europe (Van Swaay et al. 2010). In carrying

out these comparisons of the impacts of reduced-effort

monitoring on model performance, we determine the con-

sequences of having different levels of survey frequencies

across BMSs and assess the ability of each approach to

perform reliable large-scale analyses by integrating data

across schemes with different sampling protocols.

Materials and methods

BUTTERFLY MONITORING SCHEMES

Most butterfly monitoring schemes are based on the protocol

developed for the original BMS in the UK (Pollard & Yates

1993). When weather conditions are suitable for butterfly activity,

observers count all individual butterflies detected along a fixed

linear transect route divided into sections which aim to be a

homogeneous habitat type or management unit (Van Swaay et al.

2008). Butterfly counts are conducted within a 2�5-m distance

either side of the line transect and 5 m above and ahead of the

observer. Regular counts are made by trained volunteers and

reported annually to build long-term time series stored in

national data bases.

In an effort to examine butterfly responses to global change,

we compiled butterfly counts from eight BMSs distributed across

Europe, North America and Israel (within the LOLA-BMS pro-

ject). The resulting data set enables analyses to be conducted

beyond political borders, similar to approaches already conducted

Table 1. Details of butterfly monitoring schemes within the LOLA-BMS project, linking the sampling frequency suggested and the mean

proportion of missing weeks observed between 2006 and 2012

Butterfly monitoring

scheme (BMS)

Year

initiated

Number of sites

(range/year)

Number

of weeks

Sampling

frequency

Missing

counts % (SD)

United Kingdom 1976 1409 (806–1013) 26 Weekly 36 (3)

Netherlands 1990 707 (419–455) 26 Weekly 46 (3)

Catalonia (Spain) 1994 96 (65–69) 30 Weekly 26 (3)

Finland 1999 86 (63–70) 17 Weekly 45 (3)

Germany 2005 670 (302–405) 26 Weekly 48 (3)

France 2005 212 (86–108) 26 Monthly 82 (3)

Israel 2009 34 (22–29)* 39 Biweekly 68 (3)

Ohio (US) 1995 190 (82–113) 25 Weekly 36 (4)

Illinois (US) 1987 92 (57–66) 11 6 visits 51 (1)

*As of 2010 and 2012.
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in the framework of Butterfly Conservation Europe (e.g. Van

Swaay et al. 2012), and open opportunities to better account for

ecologically meaningful gradients in our models. Nevertheless, as

the number of visits varies between BMSs, differences in the pro-

portion of missing weekly counts are likely to affect the error in

abundance indices and restrict comparison of trend estimates

between countries.

L INEAR INTERPOLATION METHOD

This method applies the trapezoidal rule to estimate the area under

the flight curve derived from the observed butterfly counts (eqn 1).

Thus, the linear interpolation method accounts for uneven distribu-

tion in time, which corresponds to using a linear interpolation from

local counts to impute values for missing data. For a series of N

counts y1, y2, . . ., yN, recorded at time t1, t2,. . ., tN, the area under

the curve (abundance index) can be approximated by:

Index ¼
XN

k¼2

ðyk þ yk�1Þðtk � tk�1Þ
2

eqn 1

While we applied the linear interpolation method in its general-

ized form, specific procedures have been developed to improve the

reliability of this index. Thus, the Dutch BMS computes local

abundance indices for distinct generations and restricts analysis to

sites where a species was counted at least once within the flight

period and where the time between subsequent counts was less

than half the duration of the focal generation (Van Swaay, Plate &

Van Strien 2002). Such procedures, however, might be too restric-

tive for BMSs with reduced sampling frequency.

REGIONAL GAM METHOD

Dennis et al. (2013) suggested a two-stage modelling approach

where in a first step, a GAM is fitted across multiple sites to esti-

mate an average flight curve per year, representing the overall

variation in butterfly count over time within a specific region and

year. Thus, count y recorded at site i at day t (yit) is modelled

using a GAM with a Poisson distribution and log link function:

E½yit� ¼ lit ¼ exp½ni þ sðt; fÞ� eqn 2

where count yit is a function of a site effect (n) and a smoothing

effect over time (t) with f degree of freedom (eqn 2). Here, we

estimated the GAM models with the mgcv package in R version

3.1.1 (Wood 2006; R Core Team 2014), using a penalized cubic

regression spline as basis with the degree of smoothing estimated

by general cross-validation (Wood 2006). In a second step, the

resulting flight curve is standardized to one (Σlt = 1) and used as

an offset in a loglinear model predicting values for missing

counts. A local annual abundance index can then be derived from

the area under the curve obtained from the observed and the

imputed weekly counts (eqn 1).

The regional GAM approach assumes a common flight period

across sites. While the two-stage modelling approach was originally

applied across all sites in the UK, the authors suggested using geo-

graphical stratification to enhance the realism of the assumption

and improve the reliability of the method (Dennis et al. 2013).

Stratification is particularly relevant for data collected over large

spatial extents where flight periods are expected to vary across cli-

matic regions (Table S1 in Supporting Information). Here, we

stratified the European BMS data available with the LOLA-BMS

project with the bioclimatic regions defined in Metzger et al. (2013)

and computed annual flight curves for each region (Fig. 1). The

regional flight curves were then used to impute values for missing

counts and compute local abundance indices (eqn 1).

We assessed and compared the performance of both the regio-

nal GAM and the linear interpolation methods with respect to

the error in local abundance indices and the statistical power of

trend analysis on collated indices derived from a loglinear model

that accounts for site and year effects (Roy, Rothery & Brereton

2007). The methods were first examined against simulated butter-

fly count data, where variation in flight period patterns, temporal

trends and proportion of missing data were controlled, and then

with real data that we sequentially degraded by increasing the

proportion of missing counts.

SIMULATED COUNT DATA

To simulate realistic butterfly count data, we generated an emer-

gence curve for a univoltine species from a generalization of the

Zonneveld model (eqn 3), a model that is widely used to describe

and analyse the phenology of adult stage (Zonneveld 1991; Cal-

abrese 2012). In this model, the probability distribution function

is based on a generalized logistic distribution:

fEðt; l;b; dÞ ¼ deðt�lÞ=b

bð1þ eðt�lÞ=bÞdþ1
eqn 3

where l and b are the location and scale parameters, respectively,

and d affecting the skewness of the probability distribution and

thereby the asymmetry in the emergence curve. To account for

variation in seasonal patterns observed across sites and years

within a climatic region, the location parameter (l) of peak abun-

dance was extracted from a normal random variable with a stan-

dard deviation of 2 days around a set date (190 � 4 days [July 9th]

for univoltine). In our simulation, scale (b = 3) and skewness

(d = 0�15) were kept constant among sites and only the date of

peak abundance was allowed to vary. This model was used to gen-

erate a probability distribution over the monitoring season, for

each site and year. We simulated two data sets, one with 1000 sites

monitored over 1 year and a second with 100 sites monitored over

a 10-year period (i.e. 1000 independent distributions). For both

data sets, we generated an initial total abundance per site, ranging

between 35 and 1150 individuals, and in the second one we imposed

a declining trend of 10% over the 10-year period. Butterfly counts

were then extracted from a random Poisson distribution where the

expected count was the total abundance for a specific site and year

weighted by its corresponding probability distribution. From the

resulting series, we kept 26 weekly counts (one per week from April

to September) per site and year, the retained weekdays being

selected randomly. To simulate data for a bivoltine species, we used

the same procedure, but juxtaposed two non-overlapping probabil-

ity distributions with two distinct peaks.

OBSERVED COUNT DATA

From the data available for the LOLA-BMS project, we

extracted butterfly counts for Pyronia tithonus to compute abun-

dance indices and trend estimates using both the regional GAM

and the linear interpolation methods. This univoltine species was

selected for its known decline across Europe (Van Swaay et al.
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2010) and for the quality of the data available to establish reli-

able reference values for both local abundance and temporal

trend. We extracted the count data from two schemes where but-

terfly counts were recorded weekly (Netherlands and United

Kingdom), restricting our selection to a 10-year period (2003–

2012) and sites found in the ‘Cool temperate and moist’ biocli-

matic region (Fig. 1), having at least 20 weekly visits per year

and where the species was present for at least 8 years. Following

those criteria, we gathered data for an average of 32 sites per

year, ranging from 30 to 34, as some sites are not monitored

every year. For the regional GAM, we derived the annual flight

curves from the data available within the ‘Cold temperate and

moist’ climate regions (Germany, Netherlands, United Kingdom,

France and Catalonia north-east Spain, Fig. 1). To optimize

computation, the GAM was fitted on a random subset of 300

sites where the focal species was detected and with at least four

visits during a season.

REDUCING SAMPLING EFFORT – DATA DEGRADATION

For protocols recording butterfly count on a weekly basis from

April to September, a ‘complete’ data set corresponds to 26

counts. Thus, we systematically degraded the observed and simu-

lated data sets by increasing the number of missing counts from

20 to 80% of the 26 monitoring weeks. In reality, missing counts

are generated by two alternative processes, one determined by the

monitoring protocol itself (weekly, biweekly or monthly counts),

hereafter defined as ‘structural’, and one relating to sampling

behaviour originating from the environment (unsuitable weather

conditions) or the observer being unavailable. To account for

both processes when degrading the data to a specific proportion

of missing values, we applied a stratified randomization proce-

dure. Stratification was applied to account for the structural

effect of different sampling protocols (weekly, fortnightly and

monthly) and distribute the missing counts across the monitoring

season. Missing counts were then generated by randomly remov-

ing counts in each stratum. To assess the effect of restricting the

analysis to sites where the week of peak abundance was recorded,

we compared the results of two degradation processes, one where

random sampling was constrained to keep the week where the

peak abundance was observed (highest for bivoltine) and the

other where this constraint was not applied. For each degrada-

tion process, we estimated the proportion of the flight curve that

was sampled with the remaining counts (Table S2).

ERROR AND STATISTICAL POWER

To assess the sensitivity of local abundance indices to increasing

number of missing counts, we ran the degradation process for

each site of the first simulated data set (1000 sites). From the

Fig. 1. Climate regions across Europe as defined in Metzger et al. (2013) with the flight curve of Pyronia tithonus observed in 2012 within

four regions (Cold & mesic [yellow], Cold temperate & moist [pale blue], Cold temperate & dry [purple], Warm temperate & mesic [blue]).
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degraded data (20, 30, 40, 50, 60, 70, 80% missing week), we

computed abundance indices using both the linear interpolation

and the regional GAM approach and estimated the percentage

error of each index at the site level, using the undegraded data as

a benchmark. Error was estimated for both univoltine and bivol-

tine species and where the degradation process was fully random

or constrained to include the week of peak abundance.

From the second set of simulated data (100 sites, 10 years), we

examined the statistical power of detecting declining trends

(10%), given five levels of missing counts (0, 20, 40, 60, 80%)

and for an increasing number of sites contributing to the collated

indices (2–200). For each site and year, we ran 1000 degradation

processes for each level of missing counts to estimate the overall

trend in abundance with a loglinear model with fixed effect for

year, a random intercept for site and a serial correlation over

time. Models were fitted with the penalized quasi-likelihood

approximation procedure available in the glmmPQL function of

the MASS package in R version 3.1.1 (Venables & Ripley 2002;

R Core Team 2014). Power analyses were conducted for both

univoltine and bivoltine species and for constrained and fully ran-

dom degradation processes.

Because real butterfly count data show important inter-annual

variation and uneven temporal trends, we assessed the accuracy

of trend estimation on observed count of P. tithonus that we

degraded to increasing levels of missing counts (0–80%). From

each level, we calculated the mean and the standard deviation of

the trend obtained from 100 iterative degradation processes and

quantified the error relative to the original data with the Root

Mean Squared Error (RMSE). These metrics were calculated,

given constrained or fully random degradation processes. Addi-

tional details and R-scripts are available in online Supporting

Information.

Results

Overall, the regional GAM showed better performance

than the linear interpolation method. This was observed

for both the error of local indices and the power of

detecting a trend in collated indices. The benefit of using

the regional GAM over the linear interpolation method

was most apparent when butterfly counts covered <50%
of the monitoring weeks.

For both methods, errors of local abundance indices

increased with the proportion of missing weeks (Figs 2

and S1). When the regional GAM approach is used on

data with the peak week, the error of the local abundance

index was contained within 50% and evenly distributed

around zero (Fig. 2). This pattern was observed for both

univoltine and bivoltine species, although the error was

slightly larger for bivoltine species (Fig. 2a,c). In contrast,

the linear interpolation method was less robust, as the

error of local abundance indices increased substantially

with the proportion of missing counts and tended to be

biased when the proportion exceeded 50% (Fig. 2). For

univoltine species, the direction of the bias was positive

when the indices where computed on data with the peak

week. When the constraint on peak week was not applied,

the indices derived with the linear interpolation method

tended to display negative biases for both univoltine and

bivoltine species (Fig. S1). These results indicate that

indices produced with the regional GAM approach are

less prone to show systematic bias and that the expecta-

tion of the collated index (across sites) remains unbiased

even with low sampling frequencies.

In terms of the statistical power of detecting a 10%

decline observed over a 10-year period in simulated data,

the collated abundance indices based on the regional

GAM method require less sites to reach a power of 80%

of trend detection than when based on the linear method

(Fig. 3). This holds true for univoltine species, even when

80% of the monitoring weeks were missing (Fig. 3a). For

bivoltine species, the regional GAM method required at

least 60 sites to reach 80% of detection when 80% of the

monitoring weeks were missing (Fig. 3c). With such data,

the simulated trend was not detected with the linear inter-

polation method, even with 200 sites available (Table 2).

Note that our results are strictly dependent on the vari-

ance included in the simulated data and must be inter-

preted as measures of the relative ability of the two

methods to detect trends, not as a strict recommendation

for the number of sites require to detect a decline (see

Van Strien et al. 1997).

When no constraint on peak week was imposed, the

number of sites needed to reach a power of 80% with

80% of the weeks missing increases substantially for both

univoltine and bivoltine species (Fig. S2a,c). In all the

cases tested with the simulated data, statistical power

obtained with the regional GAM approach was superior

to the linear interpolation method when the proportion of

missing counts exceeded 40% and was at least comparable

below this threshold (Figs 3 and S2). In agreement with

the patterns observed for the error in abundance indices,

statistical power tended to increase when the peak week

was observed. Nevertheless, the loss in power associated

with the number of sites that would be excluded from the

analysis is expected to be more important than the gain in

precision (Table 2). Indeed, filtering for peak week would

result in excluding three sites out of four in a protocol

prescribing one visit per month.

When applied to observed counts (Pyronia tithonus),

trend estimates derived from collated indices were more

robust to data degradation when local indices were com-

puted with the regional GAM compared with the linear

interpolation method (Table 3). The improvement in the

performance was most important when the proportion of

missing counts exceeds 70% and peak week was observed

(Table 3).

Discussion

Because of their ectothermic nature and the short life

cycles, butterflies are expected to respond rapidly to cli-

mate and land-use change, making them a good indicator

group for a large number of terrestrial insect taxa (Tho-

mas 2005; but see Musters, Kalkman & Van Strien 2013;

Fleishman & Murphy 2009). butterfly monitoring schemes
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are being initiated in a growing number of countries and

are thus developing into a large network of programmes,

each contributing a substantial amount of data on species

status over time and space (Van Swaay et al. 2012). With

over 4000 transects monitored in more than 20 countries,

BMSs represent the second largest network of terrestrial

biodiversity monitoring after bird schemes, and undoubt-

edly the largest network focusing on insects. Their rapid

expansion requires support by know-how, guiding both

monitoring design and analysis. Here, we show that the

regional GAM method is the best approach to compute

abundance indices from BMS data when sampling fre-

quency decreases, whereas the commonly used linear

interpolation produces both higher errors and directional

biases when data become too sparse. This is critical for

BMSs with lower intensity survey such as biweekly proto-

col that will never have more than 50% completed sur-

veys and even fewer if there is a spell of bad weather or

volunteers miss a survey for other reasons. Because the

regional GAM can leverage data within climatic regions

and offers the flexibility to account for other covariates

(e.g. latitude, growing degree-days), it should also be con-

sidered the best approach when combining data across

BMSs and conducting large-scale analyses.

Assessment and detection of change in species status

over time requires abundance metrics that are robust to

variation in sampling effort and species biology. While

collecting and analysing insect monitoring data present

many challenges associated with the complexity of their

life cycle, the difficulty in identifying some taxa and the

importance of inter-annual variation in their abundance,

our results clearly show the benefit of the regional GAM

approach when large proportions of weekly counts are

missing. Previous methods for estimating abundance

indices, such as the one derived from the linear interpola-

tion method and the site GAM (Rothery & Roy 2001),

Fig. 2. Percentage error of abundance index from regional GAM and linear interpolation methods applied on simulated data with

increasing proportion of the flight curve missing for two types of life cycle: univoltine and bivoltine. Data were degraded with a stratified

randomization procedure constrained to include the peak week. Boxes and whiskers indicate the 5th, 25th, 50th, 75th, 95th percentiles.
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fail to produce reliable indices for schemes characterized

by reduced sampling efforts and where local count data

provide poor information on species’ flight period and

seasonal patterns in butterfly counts.

By integrating information from multiple sites to model

the seasonal pattern in butterfly counts, the two-stage

modelling approach used in the regional GAM method

greatly improves the accuracy of abundance indices and

allows data from all the sites to be used, whereas in the

past, sites without sufficient visits were systematically

excluded from the analyses (e.g. 38% in the UKBMS,

Dennis et al. 2013). Because the regional GAM method is

based on the assumption that the seasonal pattern in

butterfly abundance is shaped by drivers such as climate

and inter-annual weather fluctuations, it is crucial that

the specific flight curve is computed for climatically

comparable regions. This is well illustrated when

contrasting the observed counts with predictions derived

from the regional GAM applied to sites distributed across

different climatic regions or within a single region

(Table S1). The improved performance of the regional

GAM highlights the benefit of computing local abundance

by drawing from multiple BMSs and thereby providing

better coverage of each climatic region. This is highly rele-

vant for BMSs where some climatic regions only occur in

a small section of the country, and therefore would most

benefit from the additional information contained in an

adjacent scheme that covers the same climatic region.

While the overall proportion of missing weekly counts

generally predicts increasing errors, a stronger impact on

the abundance index is the question of whether observa-

tions successfully encapsulate the species’ flight period.

Thus, when aiming to derive a reliable proxy for species

abundance, what matters most is to optimize butterfly

Fig. 3. Probability of detecting simulated 10% decline over 10 years with increasing number of sites, given a decreasing proportion of

sampled weeks, when regional GAM and linear interpolation methods are applied with two types of life cycle: univoltine and bivoltine.

Data were degraded with a stratified randomization procedure constrained to include the peak week.
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counts within the flight period. This enables programmes

with reduced, but targeted, sampling effort to generate

reliable estimates of abundance for specific subsets of spe-

cies (Roy, Rothery & Brereton 2007; Roy et al. 2015).

Nevertheless, such sampling protocols alone will fail to

provide accurate information for species emerging before

or after the specific sampling period. Therefore, monitor-

ing schemes with reduced sampling effort can benefit from

adjacent schemes with more intensive effort, but only

when survey sites are scattered across the same climatic

region. Another cost-effective approach to improve our

ability to estimate yearly flight curves is to establish a

subset of sites with higher frequency of visits. Determin-

ing the best balance between the number of low-frequency

sites and the number of high-frequency sites should be a

subject of future research.

When aiming to assess butterfly status across a large

spatial extent, multiple data sets with different sampling

effort need to be collated, making the choice of a method

to calculate a robust abundance index crucial. Further-

more, BMSs with low-intensity survey protocols, until

now, have had no basis by which to choose between

methods to compute reliable abundance indices, since all

previous models were developed specifically for schemes

with weekly visits and relatively few missing counts. Here,

we show that in both cases, the regional GAM approach

produces unbiased abundance indices and has more power

to detect trends compared with the linear interpolation

method. Our findings can provide guidance to new or

growing monitoring schemes by showing the value of

tweaking visitation protocols to reach an overall sampling

intensity of 50%, including the impact of incidental miss-

ing visits. By optimizing the use of information contained

in BMS data, the regional GAM method enables integra-

tive analyses across sites with high- and low-intensity vis-

its. This means that BMSs can recruit from a wider range

of potential volunteers motivated to sample at different

intensities and increase the area of land monitored. Maxi-

Table 3. Mean trend estimates for Pyronia tithonus computed on observed butterfly count data where the proportion of missing weeks

was systematically increased with stratified randomization procedures with and without constraint on the inclusion of the peak week.

Root Mean Squared Error (RMSE) was calculated relative to the original trend (�0�066 per year)

Degradation constraint

Proportion of

missing weeks

Regional GAM Linear interpolation

Mean (SE) RMSE Mean (SE) RMSE

With Peak 0�2 �0�067 (0�002) 0�003 �0�067 (0�003) 0�003
0�4 �0�067 (0�003) 0�003 �0�067 (0�003) 0�004
0�6 �0�066 (0�004) 0�004 �0�067 (0�005) 0�007
0�8 �0�065 (0�004) 0�004 �0�081 (0�006) 0�017

Random 0�2 �0�068 (0�003) 0�003 �0�067 (0�003) 0�003
0�4 �0�068 (0�004) 0�005 �0�067 (0�005) 0�005
0�6 �0�068 (0�006) 0�007 �0�067 (0�007) 0�007
0�8 �0�066 (0�014) 0�013 �0�069 (0�018) 0�019

Table 2. Mean number of sites (N) required for detecting 10% decline over 10 years with 80% statistical power (a = 0�05) with the

regional GAM and linear interpolation methods applied on simulated data with increasing proportion of missing weeks for univoltine

and bivoltine life cycles. Lower (lci) and upper (uci) confidence intervals (95%) on the number of sites were estimated from a bootstrap

procedure. Data degradation was performed with stratified randomization procedures with and without constraint on the inclusion of

the peak week

Life cycle

Proportion of

missing weeks

Regional GAM Linear interpolation

With peak N (lci-uci) Random N (lci-uci) With peak N (lci-uci) Random N (lci-uci)

Univoltine 0�0 4 (2–6) 6 (4–7) 4 (2–6) 6 (4–7)
0�2 10 (8–12) 11 (9–12) 11 (10–13) 13 (12–15)
0�4 14 (12–15) 15 (13–17) 16 (14–18) 20 (18–22)
0�6 20 (18–22) 33 (29–38) 24 (22–26) 99 (60–137)
0�8 30 (27–33) 80 (63–*) * (132–*) *

Bivoltine 0�0 2 (2–2) 2 (2–2) 2 (2–2) 2 (2–2)
0�2 9 (6–11) 9 (7–12) 7 (4–9) 8 (6–11)
0�4 14 (12–17) 15 (13–17) 13 (11–15) 16 (14–18)
0�6 24 (21–26) 23 (21–26) 25 (23–28) 30 (26–*)
0�8 148 (58–164) * * *

*More than 200 sites.
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mizing the use of data in this way, through the inclusion

of data with lower sampling effort and by sharing across

schemes, should help support better conservation policy

and decision-making from local to continental scales.
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