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Modelling and monitoring: adaptive
biodiversity management in the 21st century

With increasing threats on biodiversity, informed conserva-

tion decisions need to be based on currently observed and

future predicted trends of biodiversity (Pereira, Navarro &

Martins 2012; Guisan et al. 2013). In this regard, two essen-

tial components supporting informed biodiversity conser-

vation decisions are good monitoring data to assess recent

and ongoing trends (Collen et al. 2013; Pereira et al. 2013)

and robust models to anticipate possible future trends (Per-

eira et al. 2010a; Akc�akaya et al. 2016). Models benefit

from robust monitoring data sets, that is repeated observa-

tions of biodiversity, as they need data to be fitted or vali-

dated, but models can also help assess data

representativeness (e.g. by highlighting any bias), support

proper data collection (e.g. covering the relevant gradients)

or be used to make more effective use of biodiversity obser-

vations (Guisan et al. 2006, 2013; Ferrier 2011).

On the data side, species occurrence data bases with

global coverage – like the Global Biodiversity Information

Facility (GBIF; Scholes et al. 2012) – provide increasingly

large amounts of data, but these are often geographically

and taxonomically biased, revealing highly uneven sam-

pling efforts across regions and countries (Boakes et al.

2010; Meyer et al. 2015; Proenc�a et al. 2016). The Group

on Earth Observations Biodiversity Observation Network

(GEO BON) has proposed the development of national

monitoring programmes for a variety of habitats and

taxa, thus potentially representing a more unbiased data

source to support biodiversity management (Pereira et al.

2010b; Scholes et al. 2012). This is a challenging endeav-

our, as biodiversity monitoring is expected to provide rel-

evant data not only for large-scale policy but also to meet

regional and local management needs, while ensuring that

resources are allocated efficiently (Green et al. 2005;

Haughland et al. 2010).

Biodiversity monitoring has already proven essential to

improve management and evaluate success of policies

(Pereira & Cooper 2006; Collen et al. 2013), but it also

represents a valuable support to basic research (Couvet

et al. 2011), as exemplified by the multiple research stud-

ies using data from the North American Breeding Bird

Survey (e.g. Miller-Rushing, Primack & Bonney 2012;

Schipper et al. 2016) or from other monitoring pro-

grammes (e.g. Weber, Hintermann & Zangger 2004;

Pearman & Weber 2007; Hanspach et al. 2014). How-

ever, monitoring schemes also have limitations. For

instance, they can be underpinned by unclear objectives

and may consequently fail to identify clear trends or to

properly evaluate the success of conservation actions (e.g.

Nichols & Williams 2006; Lindenmayer et al. 2012).

Also, they are often limited in extent (spatial and/or tem-

poral) due to lack of human and financial resources

(Levrel et al. 2010). Nevertheless, despite these limita-

tions, even monitoring schemes targeting individual spe-

cies at small scales or particular habitats still deliver data

that may often prove valuable for modelling (e.g. Bastos

et al. 2016).

On the modelling side, predictive biodiversity modelling

has developed as a core field of ecological research during

the last two decades (see Ferrier & Watson 1997; Guisan

& Zimmermann 2000; Peterson 2001; Mouquet et al.

2015). While consolidating as a powerful research tool,

predictive models of species distributions have also been

helpful in providing insights on the drivers of biodiversity

across scales and in delivering spatially explicit forecasts

of biodiversity responses to environmental pressures (Gui-

san et al. 2013), such as climate change (e.g. Bellard et al.

2012), land-use change (e.g. Ficetola et al. 2010), invasion

by non-native species (e.g. Petitpierre et al. 2012) and

interactions between these drivers (e.g. Vicente et al. 2011;

Gonc�alves et al. 2016). Predictions can be made at differ-

ent levels of biological complexity, from species and com-

munities to habitat or ecosystem types (Ferrier & Guisan

2006; Hely et al. 2006; Kerr & Dobrowski 2013). How-

ever, so far there has been limited use of predictive*Correspondence author. E-mail: jhonrado@fc.up.pt
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models in support of biodiversity monitoring. Even if

there are examples in the literature illustrating their

potential added value (e.g. Guisan & Theurillat 2005;

Tuanmu et al. 2011; Amorim et al. 2014), a more system-

atic application of models would benefit the planning of

monitoring as well as the integration of observations into

valuable data products. This would then enable the

improvement of model predictions and the reporting of

biodiversity changes near real-time (GEO BON 2015).

The four papers in this Special Feature represent a

starting point to fill existing gaps and pave some ways

towards fostering integration between biodiversity moni-

toring and modelling (Bastos et al., Carvalho et al.,

Geijzendorffer et al., Vicente et al.). In this editorial, we

provide a general review of recent advances and identify

some future research directions. We emphasize the spe-

cies-level dimensions of biodiversity in our analysis, and

particularly species distributions and populations (Pereira

et al. 2013). We start by identifying how models can be

used to improve the design of monitoring programmes

and networks. We then assess how monitoring data can

be used to improve models and validate their predictions.

We discuss how models can be used to integrate biodiver-

sity observations from different sources and other envi-

ronmental data to produce estimates of biodiversity

measures in space and time. Finally, we discuss how mod-

elling and monitoring could be further integrated to

improve biodiversity conservation and management across

scales.

Models as tools to improve biodiversity
monitoring

The number of biodiversity monitoring programmes is

increasing in order to respond to demands from decision-

makers and society for information on biodiversity

changes (Pereira et al. 2010b). But there are already many

biodiversity monitoring programmes in place, which have

collected valuable data over many years or decades. Mod-

els can be used both to design new monitoring pro-

grammes or to assess and improve existing ones. Below

we describe two broad categories of modelling applica-

tions which could improve biodiversity monitoring, partic-

ularly when used together.

DESIGNING EFFICIENT SAMPLING SCHEMES

Models have been used before with optimization objec-

tives, to improve the coverage of protected areas in a con-

servation planning context (e.g. Elith & Leathwick 2009;

Carvalho et al. 2010, 2011). Designing cost-efficient moni-

toring networks is a distinct but related challenge, involv-

ing optimal allocation of monitoring sites across space

(e.g. Amorim et al. 2014; Vicente et al. 2016). It aims at

maximizing the cost-efficiency of monitoring networks,

for example to detect population trends in multiple spe-

cies, by allocating monitoring sites to the most

informative areas while minimizing the total number of

sites (Amorim et al. 2014; Carvalho et al. 2016). Models

can also be valuable to improve existing programmes, by

contributing to identify gaps, remove bias, and fine-tune

the spatial and temporal coverage as the first data are col-

lected and analysed (Martin, Kitchens & Hines 2007).

Optimization based on power analysis and cost models

(e.g. Zielinski & Stauffer 1996; Carlson & Schmiegelow

2002) can define priorities for local densification of obser-

vation networks whenever additional resources can be

mobilized (Le Lay et al. 2010). Models can additionally

contribute to optimize the testing of hypotheses from

monitoring data, by supporting stratified sampling strate-

gies along gradients of expected biodiversity drivers (e.g.

Guisan & Theurillat 2005; Amorim et al. 2014) or consid-

ering the goals of related management programmes (e.g.

Vicente et al. 2016). Sensitivity or uncertainty analyses

can be used to define expected variation at each site,

allowing to differentiate real trends from background

variation (e.g. Zielinski & Stauffer 1996) while accounting

for uncertainty in projections (e.g. Naujokaitis-Lewis

et al. 2013).

IDENTIFYING AREAS OF SPECIES OR HABITAT

OCCURRENCE AND RAPID CHANGE

Potential benefits of a model-based monitoring design

may also arise from increasing the detectability of target

species or habitat types (e.g. Guisan et al. 2006; Metzger

et al. 2013). Predictive modelling can especially assist in

identifying areas where the monitored feature is more

likely to change, for example where a given species is

expected to gain or lose climatic suitability (Carvalho

et al. 2011) or a given habitat may lose quality (Vaz et al.

2015). Models can also locate areas particularly threat-

ened by invasion of alien species (Vicente et al. 2011,

2016; Epanchin-Niell et al. 2014) or by combined effects

of climate and land-use changes (e.g. Jetz, Wilcove &

Dobson 2007; Gonc�alves et al. 2016). Such information

can then be incorporated in spatial prioritization algo-

rithms, setting targets to achieve a minimal number of

monitoring sites per species or habitat type across areas

with different predicted trends (e.g. Carvalho et al. 2016;

Vicente et al. 2016). Model predictions can also allow the

design of efficient monitoring schemes aimed to assess the

effect of landscape barriers on species’ responses to

changes in their environment (e.g. Gonc�alves et al. 2016).
Predictive modelling is known to be prone to uncer-

tainty (e.g. Barry & Elith 2006), but methodological

advances such as ensemble forecasting and sensitivity

analyses (e.g. Pearson et al. 2006; Ara�ujo & New 2007;

Buisson et al. 2010; Carvalho et al. 2010, 2011) have

increased our capacity to quantify that uncertainty and

thereby inform conservation and management decisions.

Guisan et al. (2013) discuss how uncertainty in model pre-

dictions can influence decisions in four conservation-

related domains, which in the case of monitoring could
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translate into overestimating or underestimating costs of

running monitoring efforts. For instance, in the case of

monitoring biological invasions, underpredicting the

extent of suitable habitat for an invasive species may lead

to failure to monitor new critical areas of introduction or

spread, whereas overpredictions may waste monitoring

resources. Similar issues arise when using models to sup-

port reserve selection or translocations, both of which

need monitoring efforts to assess their actual efficiency.

As the different types of uncertainty can be incorporated

in spatial conservation prioritization processes (Moilanen

et al. 2006), the same could – and should – be done when

designing spatial monitoring schemes (using, e.g., the

uncertainty typology in Barry & Elith 2006). This would

allow setting confidence intervals around the monitored

features and help interpret the robustness of observed bio-

diversity trends.

Monitoring data can improve biodiversity
models

Well-designed monitoring networks (possibly supported

by models) not only provide the necessary information to

track biodiversity trends and thereby meet governmental

and international targets, but they also provide potentially

valuable data to validate model predictions and to fit bet-

ter models for species, habitats or biodiversity measures.

We have seen that a key problem in using existing

archived global biodiversity data bases, such as GBIF

(Scholes et al. 2012), to fit biodiversity models is that such

data can be (and often are) heavily biased (Meyer et al.

2015) and often collected opportunistically (van Strien,

van Swaay & Termaat 2013). This bias can be difficult to

reduce by using statistical methods only (as, e.g., Phillips

et al. 2009; Manceur & Kuhn 2014; Guillera-Arroita et al.

2015), and it is much more efficient to use data that have

been collected with a proper sampling strategy (Hirzel &

Guisan 2002; Edwards et al. 2006).

Using monitoring data could also contribute to build

better models and predict future trends, since the aim of

monitoring network design is precisely to avoid bias in

the estimation of biodiversity patterns, measures and

trends (e.g. Brotons, Herrando & Pla 2007; Nobis, Jaeger

& Zimmermann 2009; Pearman, Guisan & Zimmermann

2011; Pearman et al. 2014). Data from long-term monitor-

ing programmes can be especially valuable to fit robust

models, which can pinpoint problems or gaps in the

design of the monitoring schemes and thereby improve

them (e.g. Kuemmerlen et al. 2016). Extensive monitoring

schemes, where repeated observations of populations of

species, such as birds, butterflies or amphibians, are car-

ried out, often for full community assemblages, have

proved particularly useful (McGill 2003; Dornelas et al.

2014; Proenc�a et al. 2016). Monitoring schemes targeted

at evaluating specific questions or impacts can also pro-

vide valuable data for fitting models and delivering pre-

dictions of future impacts (e.g. Bastos et al. 2016).

One of the challenges in the development of Species

Distribution Models is that often the data sets used for

calibration and validation are not independent, and in

reality are a subpartition of the same data set, for exam-

ple an atlas of species distribution for a given period of

time (Ara�ujo et al. 2005a,b). Using data from two

repeated surveys of the Breeding Birds of Britain, Ara�ujo

et al. (2005a) tested the performance of Species Distribu-

tion Models in projecting range shifts for 116 species. The

models were calibrated with the 1970 species distribution

data, and projections based on climate change for 1990

were compared with the species survey data. They found

that the predictive capacity of the models was lower when

the independent validation was used, but that some mod-

els still had good performance.

Of course, data even from the best monitoring pro-

grammes are not error-free, and species detectability, in

particular, remains a recurrent problem (Kery & Schmid

2004), but biodiversity distribution models can also incor-

porate imperfect detectability when estimated so as to

obtain improved predictions (Kery, Gardner & Monnerat

2010; Rota et al. 2011; Guillera-Arroita et al. 2015). In

any case, estimating imperfect detection and bias in data

should be much easier on data sets from well-designed

monitoring networks, because the required measures to

make these estimations and posterior corrections exist or

can be applied a posteriori, such as repeated measure-

ments (e.g. capture–recapture; Kery & Schmid 2004),

whereas they are mostly unavailable for data from global

occurrences data bases (Graham et al. 2004; Meyer et al.

2015).

Models to harmonize and integrate multi-
source observations

In an effort to harmonize and integrate biodiversity moni-

toring globally, GEO BON has been developing a frame-

work of Essential Biodiversity Variables (EBVs), as the

key variables that need to be monitored to understand

and model the consequences of biodiversity change (Per-

eira et al. 2013; Skidmore et al. 2015; Geijzendorffer et al.

2016). They include variables ranging from genetic com-

position to ecosystem function, including species-level

variables such as species distributions, population abun-

dances and taxonomic diversity (Pereira et al. 2013; Gei-

jzendorffer et al. 2016). The goal is that estimates of these

variables become available for any point in space and

time with a reasonable degree of taxonomic and ecologi-

cal coverage. These EBVs can be used to develop and val-

idate models of responses of biodiversity to drivers of

change, but the EBVs themselves can also be generated

by models, especially by integrating observations from

in situ and remote sensing (GEO BON 2015).

There are multiple ways in which models can be used

to integrate in situ and remote sensing observations of

biodiversity. Many environmental variables that can be

tracked by remote sensing, or for which global data sets
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exist, are highly correlated with species distributions (He

et al. 2015; Pettorelli et al. 2016). Therefore, based on the

statistical relationship between species point occurrences

and environmental variables, it is possible to project the

area of potential occurrence of a species using predictive

models of species distributions (Guisan et al. 2013) or to

use these for changing the scale of the data (e.g. down-

scaling atlas data; Keil et al. 2013). Furthermore, coarse

species distributions based on point occurrences may be

refined with land-cover data by using habitat suitability

models and other ancillary data (Visconti et al. 2011; Jetz,

McPherson & Guralnick 2012; GEO BON 2015). There-

fore, as annually updated high-resolution global forest-

cover data sets are now available (Hansen et al. 2013), it

is now possible to estimate changes in forest species distri-

butions yearly (GEO BON 2015). Models can also be

used to estimate population abundances (e.g. Pettorelli

et al. 2014) or ecosystem attributes (e.g. Vaz et al. 2015)

from the integration of remote sensing variables and field

biodiversity data.

Towards seamless integration of data and
models for biodiversity management

There is thus an opportunity to improve biodiversity

monitoring by taking advantage of previous experience of

using models to optimize resource allocation (Elith &

Leathwick 2009; Guisan et al. 2013), and in turn to

improve models with robust biodiversity data. Models can

contribute to design better novel schemes and to improve

several features of existing monitoring programmes, pro-

moting cost-efficiency by allocating efforts where they can

be most informative. The potential contributions of mod-

els to monitoring, and of monitoring to models, are mani-

fold and largely underexplored.

We see three levels where a more systematic application

of models in biodiversity monitoring could prove useful

and should be further developed in future research agen-

das: (i) the design and set-up of new programmes, or the

assessment and improvement of existing ones, for example

to make them efficient to track biological trends from glo-

bal change drivers; (ii) the regional to global coordination

and integration of monitoring programmes under overar-

ching initiatives (such as GEO BON); and (iii) the expan-

sion of the application of monitoring data in effective

conservation management.

The first level represents two distinct stages in the life

cycle of monitoring programmes under an adaptive frame-

work, in which programmes can be adapted to novel cir-

cumstances while still maintaining their fundamental

attributes (Lindenmayer & Likens 2009). Models can

improve existing programmes by contributing to identify

gaps, correct any bias, and fine-tune the spatial and tem-

poral coverage. They can also assist adaptation of pro-

grammes to novel scenarios or forecasts for the focal

drivers of biodiversity change (e.g. Bellard et al. 2012;

Vicente et al. 2016). In the second level, in order to

advance the coordination of global monitoring efforts,

models can foster integration of multisource observation

data, pinpoint biases and data gaps, support robust esti-

mates of EBVs and predict future trends (GEO BON

2015). Finally, the third level relates to fostering the use

of monitoring data in research programmes or applied

management (e.g. Guisan et al. 2013). A striking paradox

of ecological monitoring is that it is usually meant to

improve management, but it is seldom effectively applied

to support or improve management, often due to the lack

of explicit questions or hypotheses (Lindenmayer &

Likens 2009). For instance, models could be used more

systematically to anticipate future impacts on biodiversity

(e.g. Bastos et al. 2016) or to increase the efficiency of

prospective surveying in the case of confining biological

invasions (Petitpierre et al. 2016). Models can also play a

central role in communicating monitoring results to stake-

holders, thereby promoting their effective application for

management (Guisan et al. 2013).

Given all of this, systematic application of predictive

models could contribute to optimize coverage of observa-

tion networks, to improve detectability of rare species and

habitats, and to enable earlier detection of the effects of

focal pressures on biodiversity, bringing biodiversity mon-

itoring closer to policy and management needs while

ensuring adaptability in the face of rapid environmental

change. Monitoring changes in areas more exposed to the

impacts of core biodiversity drivers will improve the

knowledge about the ecological effects of those drivers

and the ability to adapt conservation actions in space and

time (McCarthy & Possingham 2007; Guisan et al. 2013).

Still, a substantial development at the three levels

described above will require investment in targeted

research, which should be prioritized in the development

agendas of international organizations related to biodiver-

sity monitoring and conservation. Testing model-based

solutions for designing new programmes or assessing and

improving existing ones would provide unique opportuni-

ties for expanding model-assisted monitoring and integra-

tion of satellite and in situ observations.

Data accessibility

Data have not been archived because this article does not contain data.
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